Surface Energy Data for PIB: Polyisobutylene (butyl rubber), CAS # 9003-27-4

Source ^(a)	Mst. Type ^(b)	Data ^(c)	Comments ^(d)
Crocker, 1969 ⁽¹¹¹⁾	Critical ST	$\gamma_c = 27 \text{ mJ/m}^2$; no temp cited	Test liquids not known.
Shafrin, 1975(297)	Critical ST	$\gamma_{c} = 27 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Test liquids not known.
Budziak, 1991 ⁽²³⁵⁾	Contact angle	$\theta_{W}^{A} = 110.8 - 113.3^{\circ}$; no temp cited	
van Oss, 1989 ⁽²²⁾	Contact angle	$\gamma_s = 25.0 \text{ mJ/m}^2 (\gamma_s^{LW} = 25.0, \gamma_s^{AB} = 0.0,$	Test liquids water, alpha-bromonaphthalene, diiodomethane,
		$\gamma_{s}^{+} = 0.0, \gamma_{s}^{-} = 0.0); 20^{\circ}C$	formamide, and glycerin; acid-base analysis.
Roe, 1968 ⁽³²⁾	From polymer melt	$\gamma_{s} = 34.0 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Measurement by pendant drop of polymer melt extrapolated
			to 20°C. $M_n = 2700$.
LeGrand, 1969(36)	From polymer melt	$\gamma_{s} = 35.6 \text{ mJ/m}^{2}; 24^{\circ}\text{C}$	Measurement by pendant drop of polymer melt extrapolated
			to 20°C; various molecular weights.
Wu, 1969 ⁽²⁸⁾	From polymer melt	$\gamma_{s} = 33.6 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Measurement by pendant drop of polymer melt extrapolated
			to 20°C. $M_n = 2700$.
^(d) Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 19.5 \text{ mJ/m}^2$; no temp cited	Calculated from parachor and cohesive energy.
^(d) Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 20.4 \text{ mJ/m}^2$; no temp cited	Calculated by least squares from cohesive energy and molar
			volume.
Wu, 1974 ^(<u>47</u>)	Calculated	$\gamma_{s} = 34.6 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Calculated from free volume theory and molecular weight.
Wu, 1974 ^(<u>47</u>)	Calculated	$\gamma_{s} = 35.6 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Calculated from free volume theory and molecular weight.
Wu, 1982 ^{(<u>18)</u>}	Calculated	$\gamma_{s} = 30.8 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Calculated from cohesive energy density and solubility
			parameters.
Wu, 1982 ^{(<u>18)</u>}	Calculated	$\gamma_{s} = 34.5 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Calculated from liquid homologs. Infinite molecular weight.
Van Ness, 1992 ⁽¹⁸⁶⁾	Calculated	$\gamma_{s} = 35.1 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Calculated molten surface tension value, extrapolated to 20°C.
Surface-tension.de, 2007(110)	Unknown	$\gamma_{s}=33.6~mJ/m^{2}~(\gamma_{s}^{\rm ~d}=33.6,~\gamma_{s}^{\rm ~p}=0.0);~20^{\circ}C$	No details available.

©2009 Diversified Enterprises