Surface Energy Data for Nylon 6,6: Poly(hexamethylene adipamide), CAS #32131-17-2

Source ^(a)	Mst. Type ^(b)	Data [©]	Comments ^(d)
Ellison, 1954 ⁽¹³⁾	Critical ST	$\gamma_{1} = 46 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Test liquids not known.
Fox, 1954 ⁽²⁰⁴⁾	Critical ST	$\gamma_{\rm c} = 42.5 {\rm mJ/m^2}$; no temp cited	Test liquids not known.
Fort, 1964 ⁽¹⁷⁾	Critical ST	$\gamma_{\rm c}^{\rm c} = 42 \text{ mJ/m}^2$; 22°C, 65% RH	Test liquids: water, glycerol, and formamide. Polymer samples prepared by bulk melt polymerization and finish formed in contact with aluminum foil.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{\rm c}=37.5~mJ/m^2;~25^{\rm o}C$	Ethylene glycol/2-ethoxyethanol mixes, based on advancing contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{\rm c} = 49 \ mJ/m^2; \ 25^{\rm o}C$	Ethylene glycol/2-ethoxyethanol mixes, based on retreating contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{c} = 36.5 \text{ mJ/m}^{2}; 25^{\circ}\text{C}$	Polyglycol blends, based on advancing contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{c} = 48 \text{ mJ/m}^{2}; 25 \text{ °C}$	Polyglycol blends, based on retreating contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_c = 34 \text{ mJ/m}^2$; 25°C	Formamide/2-ethoxyethanol mixes, based on advancing contact angles.
^(d) Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_c = >56 \text{ mJ/m}^2$; 25°C	Formamide/2-ethoxyethanol mixes, based on retreating contact angles.
^(d) Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{\rm c} = >56 \text{ mJ/m}^2$; 25°C	Per ASTM D-2578, using formamide/2-ethoxyethanol mixes.
Van Krevelen, 1976 ⁽⁸⁵⁾	Critical ST	$\gamma_{c} = 44 \text{ mJ/m}^{2}; 23^{\circ}\text{C}$	Test liquids not known.
Fort, 1964 ⁽¹⁷⁾	Contact angle	$\theta_{W}^{A} = 73^{\circ}; 22^{\circ}C, 65\% RH$	Polymer samples prepared by bulk melt polymerization and finish formed in contact with aluminum foil.
Owens, 1969 ⁽¹⁵⁵⁾	Contact angle	$\theta_{W}^{Y} = 72^{\circ}$; no temp cited	
Dann, 1970 ⁽⁹⁴⁾	Contact angle	$\theta_{W}^{A} = 65^{\circ}; 25^{\circ}C$	Sessile drop method; surface cleaned with detergent and rinsed with distilled water.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\theta_{W}^{Y} = 70^{\circ}; 20^{\circ}C$	
Absolom, 1979 ⁽¹⁷⁹⁾	Contact angle	$\theta_{W}^{A} = 70^{\circ}; 20^{\circ}C$	
Wu, 1982 ⁽⁵⁰⁾	Contact angle	$\theta_{W}^{Y} = 72^{\circ}; 20^{\circ}C$	
Hsieh, 1992 ⁽²³⁰⁾	Contact angle	$\theta_{W}^{Y} = 61.4^{\circ}$; no temp cited	Nylon fibers.
^(d) Jonsson, 1992 ⁽¹¹²⁾	Contact angle	$\theta_{W}^{Y} = 32^{\circ}$; no temp cited	Cleaned by sonification in a 70/30 ethanol/water solution and rinsed with distilled water.
Spelt, 1992 ⁽⁸⁸⁾	Contact angle	$\theta_{W}^{A} = 70^{\circ}; 23^{\circ}C$	
Extrand, 2002 ⁽¹⁴³⁾	Contact angle	$\theta_{W}^{A} = 68.5^{\circ}; \theta_{W}^{R} = 40.9^{\circ}, d\theta_{W} = 27.6^{\circ};$ 23°C	Measured by sessile drop method; cleaned with hexane and dried under vacuum.
van Oss, 2006 ⁽²⁰⁾	Contact angle	$\theta_{W}^{Y} = 64^{\circ}; 20^{\circ}C$	
Shafrin, 1963 ⁽²⁰¹⁾	Contact angle	$\gamma_{s}^{'} = 43.2 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 34.1, \gamma_{s}^{p} = 9.1);$ no temp cited	Test liquids not known.
Owens, 1969 ⁽¹⁵⁵⁾	Contact angle	$\gamma_{s} = 47.0 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 40.8, \gamma_{s}^{p} = 6.2);$ no temp cited	Test liquids: water and diiodomethane, by geometric mean equation.
Dann, 1970 ⁽⁹⁴⁾	Contact angle	$\gamma_s^{\rm d} = 47 \text{ mJ/m}^2$; 25°C	Various test liquids.

Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_{s} = 47.9 \ mJ/m^{2} \ (\gamma_{s}^{\rm d} = 35.0, \ \gamma_{s}^{\rm p} = 12.9); \ 20^{\circ}C$	Test liquids: water and diiodomethane, by harmonic mean equation.
Kitazaki, 1972 ⁽¹⁹¹⁾	Contact angle	$\gamma_{s} = 46.5 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 42.0, \gamma_{s}^{p} = 4.5);$	Various test liquids; original results split polar component into
Absolve $1070(179)$	Contactorela	$\frac{44.1 \text{ m} \text{ /m}^2}{200 \text{ C}}$	nyurogen-anu non-nyurogen bonuing parameters.
ADSOIOIII, $1979^{(12)}$	Contact angle	$\gamma_{\rm s} = 44.1 \text{ mJ/m}^2; 20^{\circ}\text{C}$	
WU, 1979(45)	Contactangle	$\gamma_{\rm s} = 44.7 \text{ mJ/m}^2, 20^{\circ}\text{C}$	Test liquids not known, by narmonic mean equation.
wu, 1979	Contact angle	$\gamma_{c} = 43.8 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	nethod.
Tagawa, 1989 ⁽²³²⁾	Contact angle	$\gamma_s = 52.9 \text{ mJ/m}^2$; no temp cited	Test liquids: water and n-alkane; nylon fiber.
Berger, 1991 ⁽¹⁴⁵⁾	Contact angle	$\gamma_{s} = 41.6 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 33.1; \gamma_{s}^{p} = 8.5);$	Various test liquids, by geometric mean equation. Surface
		no temp cited	cleaned with dichloromethane.
Berger, 1991 ⁽¹⁴⁵⁾	Contact angle	$\gamma_{\rm c} = 39.3 \text{ mJ/m}^2 (\gamma_{\rm c}^{\rm d} = 31.7; \gamma_{\rm c}^{\rm p} = 7.6);$	Various test liquids, by geometric mean equation. 43% glass
	Ū.	no temp cited	reinforced; surface cleaned with dichloromethane.
Spelt, 1992 ⁽⁸⁸⁾	Contact angle	$\gamma_{\rm c} = 41.4 \text{ mJ/m}^2$; 23°C	Test liquids not known; calculated by the equation of state method
$v_{20} O_{55} 2006^{(20)}$	Contactangle	$\alpha = 37.7 \text{ mJ/m}^2 (\alpha^{\text{LW}} = 36.4 \text{ m}^{\text{AB}} = 1.3$	Test liquids: water alpha-bromonanbthalene dijodomethane
Vall OSS, 2000 -	Contact angle	$\gamma_{s} = 57.7 \text{ mJ/m} (\gamma_{s} = 50.4, \gamma_{s} = 1.0, \gamma_{s})$	formamide and diversity acid base analysis
M_{0} (134)	Contactangle	$\gamma_s = 0.02, \gamma_s = 21.0), 20 \text{ C}$	Tormannue, and grycenin, acid-base analysis.
Mona, 1999	Contact angle	$\gamma_s = 42.0 \text{ mJ/m} (\gamma_s = -37.4, \gamma_s = -3.4,$	restinguids not known, actu-base analysis based on reference values for water of at -48.5 mJ/m^2 and $a = -11.2 \text{ mJ/m}^2$
Vl- 2000(166)	Constant ou ele	$\gamma_s = 5.0, \gamma_s = 2.5$), no temp cited	values for water or $\gamma^* = 46.5 \text{ mJ/m}^2$ and $\gamma = 11.2 \text{ mJ/m}^2$.
KWOK, 2000(200)	Contact angle	$\gamma_c = 41.5 \text{ mJ/m}^2$; no temp cited	by Ellison, 1954 ⁽¹³⁾ .
Wu, 1971 ⁽⁴¹⁾	From polymer melt	$\gamma_s = 46.5 \text{ mJ/m}^2 (\gamma_s^{d} = 30.5, \gamma_s^{p} = 16.0); 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20°C;
			polarity calculated from interfacial tension with PE by
			harmonic mean. $M_n = 19,000$.
Wu, 1968 ⁽¹⁸²⁾	Calculated	$\gamma_{\rm s} = 46 \text{ mJ/m}^2$; 20°C	Calculated from molecular constitution.
Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 42.6 \text{ mJ/m}^2$; no temp cited	Calculated from parachor and cohesive energy.
Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_{\rm s} = 44.3 {\rm mJ/m^2}$; no temp cited	Calculated by least squares from cohesive energy and molar
		· 3	volume.
Vargha-Butler, 1985(180)	Calculated	$\gamma = 39.0 \text{ mJ/m}^2$; 23°C	Calculated from sedimentation volume.
Wu, 1982 ⁽⁵⁰⁾	Calculated	$\theta_{\rm u} = 62^{\circ}; 20^{\circ}{\rm C}$	Calculated from the theory of fractional polarity by geometric
,		W - ,	mean equation.
Wu 1982 ⁽⁵⁰⁾	Calculated	$\theta = 72^{\circ} \cdot 20^{\circ} C$	Calculated from the theory of fractional polarity by harmonic
	ouloulutou	0 _W + 2 , 20 0	mean equation
W/11 1989(18)	Calculated	$v = 45.2 \text{ mJ/m}^2 \cdot 20^{\circ}\text{C}$	Calculated from cohesive energy density and solubility
11u, 100k	Juliulu	$I_{\rm S} = 10.5$ mb/m , 60.0	naramatars
Surface-tension de 2007(110)	Unknown	$y = 46.5 \text{ mJ/m}^2$ ($y = 32.5 \text{ mJ} = 1.4$) $\cdot 2000$	parameters. No dotaile available
Sunace-tension.ue, 2007	UTIMIOWII	$\gamma_{\rm s} = 40.0 \text{ mJ/m} (\gamma_{\rm s} = 52.0, \gamma_{\rm s} = 14), 20^{\circ}\text{C}$	ויט ערומווא מימוומטול.