Surface Energy Data for PMMA: Poly(methylmethacrylate), CAS # 9011-14-7

Source ^(a)	Mst. Type ^(b)	Data ^(c)	Comments ^(d)
Jarvis, 1964 ⁽¹⁵⁾	Critical ST	$\gamma_{c} = 39 \text{ mJ/m}^{2}; 25^{\circ}\text{C}$	Various test liquids.
Lee, 1968 ⁽¹³¹⁾	Critical ST	$\gamma_{\rm c} = 38 {\rm mJ/m^2}$; no temp cited	Test liquids: water, glycerol, formamide, alcohols, and long-
			chain polyglycols.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{\rm c} = 30.5 \text{ mJ/m}^2$; 25°C	Ethylene glycol/2-ethoxyethanol mixes, based on advancing
5			contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{\rm c} = 39 \text{ mJ/m}^2$; 25°C	Ethylene glycol/2-ethoxyethanol mixes, based on retreating
Dame 1070(94)		01 5 m 1/m 2, 95 oC	contact angles.
Dann, $1970^{(94)}$	Critical ST	$\gamma_{\rm c} = 31.5 \text{ mJ/m}^2; 25 \circ \text{C}$	Polyglycol blends, based on advancing contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{\rm c} = 37 \text{ mJ/m}^2$; 25°C	Polyglycol blends, based on retreating contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_c = 30 \text{ mJ/m}^2$; 25°C	Formamide/2-ethoxyethanol mixes, based on advancing contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{c} = 41 \text{ mJ/m}^{2}; 25^{\circ}\text{C}$	Formamide/2-ethoxyethanol mixes, based on retreating
			contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{c} = 45 \text{ mJ/m}^{2}; 25^{\circ}\text{C}$	Per ASTM D-2578, using formamide/2-ethoxyethanol mixes.
Jarvis, 1964 ⁽¹⁵⁾	Contact angle	$\theta_{W}^{A} = 94^{\circ}; 25^{\circ}C, 15-30\% RH$	Polymer surface prepared by solvent evaporation.
Jarvis, 1964 ⁽¹⁵⁾	Contact angle	$\theta_{W}^{A} = 80^{\circ}; 25^{\circ}C, 15-30\% RH$	Smooth surface prepared by pressing polymer powder against stainless steel at 150°C.
Dann, 1970 ⁽⁹⁴⁾	Contact angle	$\theta_{\rm W}{}^{\rm A}=74^{\rm o};25^{\rm o}C$	Sessile drop method; surface cleaned with detergent and rinsed with distilled water.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\theta_{W}^{Y} = 80^{\circ}; 20^{\circ}C$	
Panzer, 1973 ⁽²⁵⁰⁾	Contact angle	$\theta_{W}^{"A} = 71^{\circ}$; no temp cited	
Omenyi, 1980 ⁽²⁶⁶⁾	Contact angle	$\theta_{W}^{Y} = 73^{\circ}$; no temp cited	
Winters, 1985(184)	Contact angle	$\theta_{W}^{WY} = 73^{\circ}$; no temp cited	
Janczuk, 1989 ⁽¹⁰⁶⁾	Contact angle	$\theta_{W}^{Y} = 73.8^{\circ}; 20^{\circ}C$	Unspecified cleaning method (per Good); ultrasonically rinsed with distilled water.
van Oss, 1990 ⁽²⁾	Contact angle	$\theta_{W}^{Y} = 60^{\circ}; 20^{\circ}C$	with distinct water.
van Oss, 1990 ⁽²⁾	Contact angle	$\theta_{W}^{Y} = 72^{\circ}; 20^{\circ}C$	
Jonsson, 1992 ⁽¹¹²⁾	Contact angle	$\theta_{W}^{Y} = 62^{\circ}$; no temp cited	Cleaned by sonification in a 70/30 ethanol/water solution and
	0	W	rinsed with distilled water.
Van Oss, 1992 ⁽²³⁶⁾	Contact angle	$\theta_{W}^{A} = 59.3^{\circ}$; no temp cited	
McNally, 1993 ⁽⁵⁾	Contact angle	$\theta_{W}^{^{W}A} = 75^{\circ}, \theta_{W}^{^{R}} = 58^{\circ}, d\theta_{W} = 17^{\circ}; 25^{\circ}C$	
Fukuzawa, 1994 ⁽¹¹³⁾	Contact angle	$\theta_{W}^{Y} = 71.3^{\circ}$; no temp cited	Contact angle measured after stabilizing for 15 secs.
Etzler, 2000 ⁽²⁵⁰⁾	Contact angle	$\theta_{W}^{^{WA}} = 77.9^{\circ}; 20^{\circ}C$	Measured by Wilhelmy plate method.
McCafferty, 2000 ⁽²¹⁷⁾	Contact angle	$\theta_{W}^{WY} = 64.3^{\circ}$; no temp cited	Surface cleaned with light methanol wipe.
Della Volpe, 2002 ⁽¹⁴¹⁾	Contact angle	$\theta_{W}^{WA} = 70.1^{\circ}, \ \theta_{W}^{R} = 50.3^{\circ}, \ d\theta_{W} = 19.8^{\circ};$	
-	-	no temp cited	
Cho, 2005 ⁽²²⁶⁾	Contact angle	$\theta_{W}^{Y} = 61^{\circ}$; no temp cited	Measured by sessile drop method.

Della Volpe, 2006 ⁽¹³⁷⁾	Contact angle	$\theta_{W}^{Y} = 69.9^{\circ}$; no temp cited	Wilhelmy plate method; surface cleaned in trichloroethylene; droplet size 3 <i>u</i> l.
Della Volpe, 2006(137)	Contact angle	$\theta_{W}^{Y} = 66.8^{\circ}$; no temp cited	Wilhelmy plate method; surface cleaned in trichloroethylene; droplet size 5 <i>u</i> l.
Della Volpe, 2006 ⁽¹³⁷⁾	Contact angle	$\theta_{W}^{Y} = 64.4^{\circ}$; no temp cited	Vibrationally induced equilibrium method; surface cleaned in trichloroethylene; droplet size 3 <i>u</i> l.
Della Volpe, 2006 ⁽¹³⁷⁾	Contact angle	$\theta_{W}^{Y} = 62.3^{\circ}$; no temp cited	Vibrationally induced equilibrium method; surface cleaned in trichloroethylene; droplet size 5 <i>u</i> l.
Johansson, 2006 ⁽¹¹³⁾	Contact angle	$\theta_{W}^{A} = 67^{\circ}$; no temp cited	Ultrasonically cleaned in isopropanol and rinsed with ethanol.
Dann, 1970 ⁽⁹⁴⁾	Contact angle	$\gamma_{c}^{d} = 41 \text{ mJ/m}^{2}; 25^{\circ}\text{C}$	Various test liquids.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_{s} = 40.2 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 35.8; \gamma_{s}^{p} = 4.4); 20^{\circ}\text{C}$	Test liquids: water and diiodomethane, by geometric mean
11a, 1011	contactungio	γ_s 10.2 ms/m $(\gamma_s$ 00.0, γ_s m), 20 0	equation.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_{s} = 41.2 \text{ mJ/m}^{2} \ (\gamma_{s}^{\rm d} = 30.9; \gamma_{s}^{\rm p} = 10.3); 20^{\circ}\text{C}$	Test liquids: water and diiodomethane, by harmonic mean equation.
Kitazaki, 1972(191)	Contact angle	$\gamma_s = 43.2 \text{ mJ/m}^2 (\gamma_s^{d} = 42.4, \gamma_s^{p} = 0.8);$	Various test liquids; original results split polar component into
	0	no temp cited	hydrogen- and non-hydrogen bonding parameters.
Wu, 1979 ⁽⁴⁵⁾	Contact angle	$\gamma_{c} = 42.5 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Test liquids not known; calculated by the equation of state method.
Busscher, 1981(72)	Contact angle	$\gamma_{s} = 44.3 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 33.7, \gamma_{s}^{p} = 10.6);$ no temp cited	Test liquids: water and propanol.
Chaudhury, 1984(21)	Contact angle	$\gamma_{s} = 40.6 \text{ mJ/m}^{2} (\gamma_{s}^{LW} = 40.6, \gamma_{s}^{AB} = 0.0, \gamma_{s}^{+} = 0.0, \gamma_{s}^{-} = 12.0); 20^{\circ}\text{C}$	Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis.
van Oss, 1987 ⁽²⁴⁾	Contact angle	$\gamma_{s}^{r} = 40.0 \text{ mJ/m}^{2} (\gamma_{s}^{LW} = 40.0, \gamma_{s}^{AB} = 0.0, \gamma_{s}^{+} = 0.0, \gamma_{s}^{-} = 14.6); 20^{\circ}\text{C}$	Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis.
Janczuk, 1988 ⁽¹⁰⁷⁾	Contact angle	$\gamma_{s}^{P} = 44.9 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 39.0; \gamma_{s}^{p} = 6.0);$ no temp cited	Various test liquids, by geometric mean equation.
Janczuk, 1989 ⁽¹⁰⁸⁾	Contact angle	$\gamma_{s} = 45.0 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 38.3; \gamma_{s}^{p} = 6.8);$ no temp cited	Various test liquids, by harmonic-geometric mean equation.
Janczuk, 1989 ⁽¹⁰⁸⁾	Contact angle	$\gamma_{s} = 46.7 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 34.6; \gamma_{s}^{p} = 12.1);$ no temp cited	Various test liquids, by harmonic mean equation.
van Oss, 1990 ⁽²⁾	Contact angle	$\begin{split} \gamma_{s} &= 43.2 \text{ mJ/m}^{2} \ (\gamma_{s}^{LW} = 43.2, \ \gamma_{s}^{AB} = 0.0, \\ \gamma_{s}^{+} &= 0.0, \ \gamma_{s}^{-} = 22.4); \ 20^{\circ}\text{C} \end{split}$	Test liquids water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis.
van Oss, 1990 ⁽²⁾	Contact angle	$\begin{split} \gamma_{s} &= 41.4 \text{ mJ/m}^{2} \ (\gamma_{s}^{LW} = 41.4, \ \gamma_{s}^{AB} = 0.0, \\ \gamma_{s}^{+} &= 0.0, \ \gamma_{s}^{-} = 12.2); \ 20^{\circ}\text{C} \end{split}$	Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis.
Janczuk, 1990 ⁽¹⁰⁵⁾	Contact angle	$\gamma_s = 43.2 \text{ mJ/m}^2$; no temp cited	Test liquids: water and diiodomethane.
Janczuk, 1990 ⁽¹⁰⁵⁾	Contact angle	$\gamma_s = 41.5 \text{ mJ/m}^2$; no temp cited	Averaged over 28 test liquids.
Berger, 1991 ⁽¹⁴⁵⁾	Contact angle	$\gamma_{s}^{P} = 43.9 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 37.2; \gamma_{s}^{P} = 6.7);$ no temp cited	Various test liquids, by geometric mean equation; surface cleaned with acetone.
Berger, 1991 ⁽¹⁴⁵⁾	Contact angle	$\gamma_s = 41.7 \text{ mJ/m}^2 (\gamma_s^{d} = 37.6; \gamma_s^{p} = 4.1);$ no temp cited	Various test liquids, by geometric mean equation; surface cleaned with dichloromethane.
Berger, 1991 ⁽¹⁴⁵⁾	Contact angle	$\gamma_{s} = 42.9 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 38.6; \gamma_{s}^{p} = 4.3);$	Various test liquids, by geometric mean equation; surface

		no temp cited	cleaned with detergent.
Ruckenstein, 1993 ⁽⁶⁾	Contact angle	$\gamma_{s} = 51.2 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 39.4; \gamma_{s}^{p} = 11.8);$ no temp cited	Octane droplets and air bubbles submersed in water; geometric mean equation
Fukuzawa, 1994 ⁽¹¹³⁾	Contact angle	$\begin{split} \gamma_s &= 41.1 \ mJ/m^2 \ (\gamma_s^{\rm LW} = 40.2, \ \gamma_s^{\rm AB} = 0.9, \\ \gamma_s^{+} &= 0.02, \ \gamma_s^{-} = 12.2); \ no \ temp \ cited \end{split}$	Test liquids: water, formamide, and diiodomethane; acid-base analysis, calculated per Good and van Oss ⁽⁸⁶⁾ . Contact angles measured after stabilizing for 15 secs.
Fukuzawa, 1994 ⁽¹¹³⁾	Contact angle	γ_s = 48.8 mJ/m²; no temp cited	Test liquids: water, formamide, and diiodomethane; acid-base analysis calculated by arithmetic and geometric means.
Hwang, 1995 ⁽²⁵⁷⁾	Contact angle	$\gamma_s = 38.5 \text{ mJ/m}^2$; no temp cited	Test liquids not known.
Lloyd, 1995 ⁽²¹⁸⁾	Contact angle	$\gamma_{s}^{LW} = 35.0, \gamma_{s}^{+} = 0.0, \gamma_{s}^{-} = 12.2$; no temp cited	Test liquids not known; acid-base analysis.
Lee, 1999 ⁽¹¹⁶⁾	Contact angle	$\begin{split} \gamma_{s} &= 43.2 \text{ mJ/m}^{2} \; (\gamma_{s}^{LW} = 43.2, \; \gamma_{s}^{AB} = 0.0, \\ \gamma_{s}^{+} &= 0.0, \; \gamma_{s}^{-} = 8.8); \; 20^{\circ}C \end{split}$	Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis, based on reference values for water of $\gamma^+ = 34.2 \text{ mJ/m}^2$ and $\gamma = 19 \text{ mJ/m}^2$.
Morra, 1999 ⁽¹³⁴⁾	Contact angle	$\gamma_s = 37.7 \text{ mJ/m}^2 (\gamma_s^{LW} = 37.4, \gamma_s^{AB} = 0.3, \gamma_s^+ = 0.01, \gamma_s^- = 2.2); \text{ no temp cited}$	Test liquids not known; acid-base analysis based on reference values for water of $\gamma^+ = 48.5 \text{ mJ/m}^2$ and $\gamma = 11.2 \text{ mJ/m}^2$.
Etzler, 2000 ⁽¹⁷¹⁾	Contact angle	$\gamma_{s} = 40.5 \text{ mJ/m}^{2} (\gamma_{s}^{LW} = 40.5, \gamma_{s}^{AB} = 0.0,$	Various test liquids; acid-base analysis, by Good-van Oss
·	0	$\gamma_{s}^{+} = 0.0, \gamma_{s} = 6.8$; 20°C	method. Commercial sample, unknown plasticizer content.
Kwok, 2000 ⁽¹⁶⁶⁾	Contact angle	$\gamma_c = 38.3 \text{ mJ/m}^2$; no temp cited	Re-calculated by equation of state method from data produced by Kwok, 1998 ⁽¹⁷⁰⁾ .
Kwok, 2000 ⁽¹⁶⁶⁾	Contact angle	$\gamma_{\rm c}$ = 38.2 mJ/m²; no temp cited	Re-calculated by alternate equation of state method from data produced by Kwok, 1998 ⁽¹²⁰⁾ .
McCafferty, 2000(217)	Contact angle	$\gamma_{s} = 48.9 \text{ mJ/m}^{2} (\gamma_{s}^{LW} = 46.5, \gamma_{s}^{AB} = 2.4,$	Test liquids: water, diiodomethane, formamide, glycerin, and
,	U	$\gamma_{s}^{+} = 0.08, \gamma_{s}^{-} = 18.1$; no temp cited	ethylene glycol; acid-base analysis. Cleaned with methanol wipe.
Della Volpe, 2002 ^(<u>141</u>)	Contact angle	$\gamma_{s} = 42.3 \text{ mJ/m}^{2} (\gamma_{s}^{LW} = 41.6, \gamma_{s}^{AB} = 0.7,$	Various test liquids; acid-base analysis based on reference values
		$\gamma_{s}^{+} = 0.0, \gamma_{s}^{-} = 5.3$; no temp cited	for water of γ^{+} = 48.5 mJ/m ² and γ = 11.2 mJ/m ² ; from advancing contact angles.
Della Volpe, 2002 ^(<u>141</u>)	Contact angle	$\gamma_{s}=45.2~mJ/m^{2}~(\gamma_{s}^{\text{LW}}=43.1,~\gamma_{s}^{\text{AB}}=2.1,$	Various test liquids; acid-base analysis based on reference values
		γ_{s}^{+} = 0.1, γ_{s}^{-} = 7.6); no temp cited	for water of γ^{+} = 48.5 mJ/m ² and γ = 11.2 mJ/m ² ; from equilibrium (average of advancing and receding) contact angles.
^(e) Cho, 2005 ⁽²²⁶⁾	Contact angle	$\gamma_{s} = 42 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 20, \gamma_{s}^{p} = 22);$	Test liquids: water and formamide.
		no temp cited	
Wu, 1970 ⁽³⁵⁾	From polymer melt	$\gamma_{s} = 41.1 \text{ mJ/m}^{2} \ (\gamma_{s}^{\rm d} = 29.6; \gamma_{s}^{\rm p} = 11.5); \ 20^{\circ}\text{C}$	Measurement by pendant drop of polymer melt extrapolated to 20°C; polarity calculated from interfacial tension with PE by
Wu, 1971 ⁽²⁹⁾	From polymer melt	$\gamma_{s}=41.1\ mJ/m^{2}\ (\gamma_{s}{}^{d}=29.0,\ \gamma_{s}{}^{p}=12.1);\ 20^{o}C$	harmonic mean. $M_v = 3000$. Measurement by pendant drop of polymer melt extrapolated to 20°C; polarity calculated from interfacial tension with PE by geometric mean equation.
Wu, 1979 ⁽⁴⁵⁾	From polymer melt	$\gamma_{s} = 41.4 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20°C.
Wu, 1968 ⁽¹⁸²⁾	Calculated	$\gamma_{\rm s} = 36 \text{ mJ/m}^2$; 20°C	Calculated from molecular constitution.
Wu, 1970 ⁽³⁵⁾	Calculated	$\gamma_{\rm s} = 41.1 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Calculated from parachor and molecular weight.
		'S	1 0

Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 35.1 \text{ mJ/m}^2$; no temp cited	Calculated by least squares from cohesive energy and molar volume.
Van Krevelen, 1976 ⁽⁸⁵⁾	Calculated	$\gamma_s = 42 \text{ mJ/m}^2$; no temp cited	Calculated from parachor parameter.
Omenyi, 1980 ⁽²⁶⁶⁾	Calculated	$\theta_{W}^{Y} = 74.6^{\circ}; 20^{\circ}C$	Calculated from critical velocities of PMMA powder in salol, naphthalene, and biphenyl.
Omenyi, 1980 ⁽²⁶⁶⁾	Calculated	$\gamma_s=38.6~mJ/m^2;~20^{\circ}C$	Calculated from critical velocities of PMMA powder in salol, naphthalene, and biphenyl.
Wu, 1982 ⁽⁵⁰⁾	Calculated	$\theta_{\rm W} = 68^{\circ}; 20^{\circ}{\rm C}$	Calculated from the theory of fractional polarity by geometric mean equation.
Wu, 1982 ⁽⁵⁰⁾	Calculated	$\theta_{\rm W} = 78^{\circ}; 20^{\circ}{\rm C}$	Calculated from the theory of fractional polarity by harmonic mean equation.
Wu, 1982 ⁽¹⁸⁾	Calculated	$\gamma_s = 36.9 \text{ mJ/m}^2$; 20°C	Calculated from cohesive energy density and solubility parameters.
Pritykin, 1986 ⁽¹⁹⁹⁾	Calculated	γ_{s} = 35.5 mJ/m²; no temp cited	Calculated from cohesion parameters and monomer refractometric characteristics, equation 1.
Pritykin, 1986 ⁽¹⁹⁹⁾	Calculated	γ_{s} = 36.6 mJ/m²; no temp cited	Calculated from cohesion parameters and monomer refractometric characteristics, equation 2.
Van Ness, 1992 ⁽¹⁸⁶⁾	Calculated	$\gamma_{\rm s} = 37.7 \text{ mJ/m}^2$; 20°C	Calculated molten surface tension value, extrapolated to 20°C.
^(d) Mangipudi, 1996 ⁽²⁶⁹⁾	Other	$\gamma_s = 53 \text{ mJ/m}^2$; no temp cited	Measured by contact deformation per Johnson-Kendall-Roberts method.

©2009 Diversified Enterprises