Surface Energy Data for PnBMA: Poly(n-butyl methacrylate), CAS \# 25608-33-7

Source ${ }^{()^{(1)}}$	Mst. Type ${ }^{(b)}$	Data ${ }^{(\underline{C})}$	Comments ${ }^{(1)}$
Wu, 1968 ${ }^{(182)}$	Critical ST	$\gamma_{\mathrm{c}}=32 \mathrm{~mJ} / \mathrm{m}^{2} ; 20^{\circ} \mathrm{C}$	Testliquids notknown.
Wu, 1971 ${ }^{(29)}$	Contactangle	$\theta_{\text {w }}{ }^{\mathrm{Y}}=91^{\circ} ; 20^{\circ} \mathrm{C}$	
Wu, 1971 ${ }^{(29)}$	Contactangle	$\gamma_{\mathrm{s}}=33.3 \mathrm{~mJ} / \mathrm{m}^{2}\left(\gamma_{\mathrm{s}}{ }^{\mathrm{d}}=31.3, \gamma_{\mathrm{s}}^{\mathrm{p}}=2.0\right) ; 20^{\circ} \mathrm{C}$	Testliquids: waterand diiodomethane, by geometric mean equation.
Wu, 1971 ${ }^{(29)}$	Contactangle	$\gamma_{\mathrm{s}}=34.6 \mathrm{~mJ} / \mathrm{m}^{2}\left(\gamma_{\mathrm{s}}{ }^{\mathrm{d}}=28.4, \gamma_{\mathrm{s}}^{\mathrm{p}}=6.2\right) ; 20^{\circ} \mathrm{C}$	Testliquids: waterand diiodomethane, by harmonic mean equation.
Chapman, 1995(259)	Contactangle	$\gamma_{\mathrm{s}}=28.8 \mathrm{~mJ} / \mathrm{m}^{2}$; no temp cited	Testliquids notknown.
Kwok, 2000 ${ }^{(166)}$	Contactangle	$\gamma_{\mathrm{c}}=28.8 \mathrm{~mJ} / \mathrm{m}^{2}$; no temp cited	Re-calculated by equation of state method from data produced by Kwok, 1998 ${ }^{1688}$.
Kwok, 2000 ${ }^{(166)}$	Contactangle	$\gamma_{\mathrm{c}}=28.5 \mathrm{~mJ} / \mathrm{m}^{2}$; no temp cited	Re-calculated by altemate equation of state method from data produced by Kwok, 1998 ${ }^{1688}$.
Wu, 1970 ${ }^{(35)}$	From polymermelt	$\gamma_{\mathrm{s}}=31.3 \mathrm{~mJ} / \mathrm{m}^{2}\left(\gamma_{\mathrm{s}}{ }^{\mathrm{d}}=25.0, \gamma_{\mathrm{s}}^{\mathrm{p}}=6.3\right) ; 20^{\circ} \mathrm{C}$	Directmeasurementof polymermeltextrapolated to $20^{\circ} \mathrm{C}$.
Wu, 1970 ${ }^{(35)}$	From polymermelt	$\gamma_{\mathrm{s}}=31.2 \mathrm{~mJ} / \mathrm{m}^{2}\left(\gamma_{\mathrm{s}}^{\mathrm{d}}=26.3, \gamma_{\mathrm{s}}^{\mathrm{p}}=4.9\right) ; 20^{\circ} \mathrm{C}$	Measurementby pendantdrop of polymermeltextrapolated to $20^{\circ} \mathrm{C}$; polarity calculated from interfacial tension with PE by harmonic mean. $\mathrm{M}=37,000$.
Wu, 1971 ${ }^{(29)}$	From polymermelt	$\gamma_{\mathrm{s}}=31.2 \mathrm{~mJ} / \mathrm{m}^{2}\left(\gamma_{\mathrm{s}}{ }^{\text {d }}=25.5, \gamma_{\mathrm{s}}^{\mathrm{p}}=5.7\right) ; 20^{\circ} \mathrm{C}$	Measurementby pendantdrop of polymermeltextrapolated to $20^{\circ} \mathrm{C}$; polarity calculated from interfacial tension with PE by geometric mean equation.
Wu, 1968 ${ }^{(182)}$	Calculated	$\gamma_{\mathrm{s}}=32 \mathrm{~mJ} / \mathrm{m}^{2} ; 20^{\circ} \mathrm{C}$	Calculated from molecularconstitution.
Wu, 1970 ${ }^{(35)}$	Calculated	$\gamma_{\mathrm{s}}=38.1 \mathrm{~mJ} / \mathrm{m}^{2} ; 20^{\circ} \mathrm{C}$	Calculated from parachorand molecularweight.
Wu, 1982 ${ }^{(18)}$	Calculated	$\gamma_{\mathrm{s}}=34.0 \mathrm{~mJ} / \mathrm{m}^{2} ; 20^{\circ} \mathrm{C}$	Calculated from cohesive energy density and solubility parameters.
Van Ness, 1992 ${ }^{(186)}$	Calculated	$\gamma_{\mathrm{s}}=30.8 \mathrm{~mJ} / \mathrm{m}^{2} ; 20^{\circ} \mathrm{C}$	Calculated molten surface tension value, extrapolated to $20^{\circ} \mathrm{C}$.
Pritykin, 1986 ${ }^{(199)}$	Calculated	$\gamma_{\mathrm{s}}=36.5 \mathrm{~mJ} / \mathrm{m}^{2}$; no temp cited	Calculated from cohesion parameters and monomer refractometric characteristics, equation 1.
Pritykin, 1986 ${ }^{(1099}$	Calculated	$\gamma_{\mathrm{s}}=35.3 \mathrm{~mJ} / \mathrm{m}^{2}$; no temp cited	Calculated from cohesion parameters and monomer refractometric characteristics, equation 2.

