Surface Energy Data for PEO: Poly(ethylene oxide) (poly(ethylene glycol)), CAS #25322-68-3

Source ^(a)	Mst. Type ^(b)	Data [©]	Comments ^(d)
Lee, 1968 ⁽¹³¹⁾	Critical ST	$\gamma_{\rm c}$ = 43 mJ/m²; no temp cited	Test liquids: water, glycerol, formamide, alcohols, and long- chain polyglycols.
van Oss, 1990 ⁽²⁾	Contact angle	$\theta_{W}^{Y} = 63^{\circ}; 20^{\circ}C$	1 303
van Oss, 1987 ⁽²⁴⁾	Contact angle	$\gamma_s = 43.0 \text{ mJ/m}^2 \ (\gamma_s^{LW} = 43.0, \ \gamma_s^{AB} = 0.0, \ \gamma_s^{+} = 0.0, \ \gamma_s^{-} = 64.0); \ 20^{\circ}\text{C}$	Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis.
van Oss, 1987 ⁽²⁴⁾	Contact angle	$\gamma_s = 45.9 \text{ mJ/m}^2 \ (\gamma_s^{LW} = 45.9, \ \gamma_s^{AB} = 0.0, \ \gamma_s^+ = 0.0, \ \gamma_s^- = 58.5); \ 20^{\circ}\text{C}$	Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis.
Good, 1992 ⁽⁸⁶⁾	Contact angle	$\gamma_{s} = 45 \text{ mJ/m}^{2} \ (\gamma_{s}^{LW} = 45, \ \gamma_{s}^{AB} = 0.0, \ \gamma_{s}^{+} = 0.0, \ \gamma_{s}^{-} = 66); \text{ no temp cited}$	Test liquids not known; acid-base analysis, using advancing contact angle data.
Lee, 1999 ⁽¹¹⁶⁾	Contact angle	$\gamma_s = 46.7 \text{ mJ/m}^2 \ (\gamma_s^{LW} = 43.5, \ \gamma_s^{AB} = 3.2, \ \gamma_s^+ = 0.06, \ \gamma_s^- = 43.5); \ 20^{\circ}C$	Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis, based on reference values for water of γ^+ = 34.2 mJ/m ² and γ = 19 mJ/m ² .
Roe, 1968 ⁽³²⁾	From polymer melt	$\gamma_{_S} = 42.8~mJ/m^2~(\gamma_{_S}^{~d} = 30.6,~\gamma_{_S}^{~p} = 12.2);~20^{\circ}C$	Measurement by pendant drop of polymer melt extrapolated to 20° C; diol solvent, $M_{w} = 6,000$.
Wu, 1982 ⁽¹⁸⁾	From polymer melt	$\gamma_s = 42.5 \text{ mJ/m}^2; 24^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 24°C.
Yuan, 1999 ⁽²⁰⁷⁾		$\gamma_s = 42.9 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20° C; diol solvent, $M_{\rm w} = 17,000$.
Yuan, 1999 ⁽²⁰⁷⁾	From polymer melt	$\gamma_s = 44.1 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20° C. dimethylether solvent, $M_w = 5,000$.
Yuan, 1999 ⁽²⁰⁷⁾	From polymer melt	$\gamma_s = 44.2 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20° C. dimethylether solvent, $M_w = 100,000$.
Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 37.8 \text{ mJ/m}^2$; no temp cited	Calculated from parachor and cohesive energy.
Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 41.8 \text{ mJ/m}^2$; no temp cited	Calculated by least squares from cohesive energy and molar volume.
Wu, 1974 ⁽⁴⁷⁾	Calculated	$\gamma_{c} = 42.3 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Calculated from free volume theory and molecular weight.
Wu, 1974(47)	Calculated	$\gamma_{\rm s} = 44.4 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Calculated from free volume theory and molecular weight.
Wu, 1982 ⁽¹⁸⁾	Calculated	$\gamma_{\rm s} = 41.5 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Calculated from liquid homologs. Infinite molecular weight.
Van Ness, 1992 ⁽¹⁸⁶⁾	Calculated	$\gamma_{\rm s} = 41.5 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Calculated molten surface tension value, extrapolated to 20°C.
Surface-tension.de, 2007(110)	Unknown	$\gamma_s^{\rm d}=42.9~mJ/m^2$ ($\gamma_s^{\rm d}=30.9,\gamma_s^{\rm p}=12.0$); 20°C	No details available.

©2009 Diversified Enterprises