Surface Energy Data for PEO: Poly(ethylene oxide) (poly(ethylene glycol)), CAS #25322-68-3 | Source ^(a) | Mst. Type ^(b) | Data [©] | Comments ^(d) | |---------------------------------|--------------------------|--|---| | Lee, 1968 ⁽¹³¹⁾ | Critical ST | $\gamma_{\rm c}$ = 43 mJ/m²; no temp cited | Test liquids: water, glycerol, formamide, alcohols, and long-
chain polyglycols. | | van Oss, 1990 ⁽²⁾ | Contact angle | $\theta_{W}^{Y} = 63^{\circ}; 20^{\circ}C$ | 1 303 | | van Oss, 1987 ⁽²⁴⁾ | Contact angle | $\gamma_s = 43.0 \text{ mJ/m}^2 \ (\gamma_s^{LW} = 43.0, \ \gamma_s^{AB} = 0.0, \ \gamma_s^{+} = 0.0, \ \gamma_s^{-} = 64.0); \ 20^{\circ}\text{C}$ | Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis. | | van Oss, 1987 ⁽²⁴⁾ | Contact angle | $\gamma_s = 45.9 \text{ mJ/m}^2 \ (\gamma_s^{LW} = 45.9, \ \gamma_s^{AB} = 0.0, \ \gamma_s^+ = 0.0, \ \gamma_s^- = 58.5); \ 20^{\circ}\text{C}$ | Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis. | | Good, 1992 ⁽⁸⁶⁾ | Contact angle | $\gamma_{s} = 45 \text{ mJ/m}^{2} \ (\gamma_{s}^{LW} = 45, \ \gamma_{s}^{AB} = 0.0, \ \gamma_{s}^{+} = 0.0, \ \gamma_{s}^{-} = 66); \text{ no temp cited}$ | Test liquids not known; acid-base analysis, using advancing contact angle data. | | Lee, 1999 ⁽¹¹⁶⁾ | Contact angle | $\gamma_s = 46.7 \text{ mJ/m}^2 \ (\gamma_s^{LW} = 43.5, \ \gamma_s^{AB} = 3.2, \ \gamma_s^+ = 0.06, \ \gamma_s^- = 43.5); \ 20^{\circ}C$ | Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis, based on reference values for water of γ^+ = 34.2 mJ/m ² and γ = 19 mJ/m ² . | | Roe, 1968 ⁽³²⁾ | From polymer melt | $\gamma_{_S} = 42.8~mJ/m^2~(\gamma_{_S}^{~d} = 30.6,~\gamma_{_S}^{~p} = 12.2);~20^{\circ}C$ | Measurement by pendant drop of polymer melt extrapolated to 20° C; diol solvent, $M_{w} = 6,000$. | | Wu, 1982 ⁽¹⁸⁾ | From polymer melt | $\gamma_s = 42.5 \text{ mJ/m}^2; 24^{\circ}\text{C}$ | Direct measurement of polymer melt extrapolated to 24°C. | | Yuan, 1999 ⁽²⁰⁷⁾ | | $\gamma_s = 42.9 \text{ mJ/m}^2; 20^{\circ}\text{C}$ | Direct measurement of polymer melt extrapolated to 20° C; diol solvent, $M_{\rm w} = 17,000$. | | Yuan, 1999 ⁽²⁰⁷⁾ | From polymer melt | $\gamma_s = 44.1 \text{ mJ/m}^2; 20^{\circ}\text{C}$ | Direct measurement of polymer melt extrapolated to 20° C. dimethylether solvent, $M_w = 5,000$. | | Yuan, 1999 ⁽²⁰⁷⁾ | From polymer melt | $\gamma_s = 44.2 \text{ mJ/m}^2; 20^{\circ}\text{C}$ | Direct measurement of polymer melt extrapolated to 20° C. dimethylether solvent, $M_w = 100,000$. | | Sewell, 1971 ⁽¹⁹³⁾ | Calculated | $\gamma_s = 37.8 \text{ mJ/m}^2$; no temp cited | Calculated from parachor and cohesive energy. | | Sewell, 1971 ⁽¹⁹³⁾ | Calculated | $\gamma_s = 41.8 \text{ mJ/m}^2$; no temp cited | Calculated by least squares from cohesive energy and molar volume. | | Wu, 1974 ⁽⁴⁷⁾ | Calculated | $\gamma_{c} = 42.3 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$ | Calculated from free volume theory and molecular weight. | | Wu, 1974(47) | Calculated | $\gamma_{\rm s} = 44.4 \text{ mJ/m}^2; 20^{\circ}\text{C}$ | Calculated from free volume theory and molecular weight. | | Wu, 1982 ⁽¹⁸⁾ | Calculated | $\gamma_{\rm s} = 41.5 \text{ mJ/m}^2; 20^{\circ}\text{C}$ | Calculated from liquid homologs. Infinite molecular weight. | | Van Ness, 1992 ⁽¹⁸⁶⁾ | Calculated | $\gamma_{\rm s} = 41.5 \text{ mJ/m}^2; 20^{\circ}\text{C}$ | Calculated molten surface tension value, extrapolated to 20°C. | | Surface-tension.de, 2007(110) | Unknown | $\gamma_s^{\rm d}=42.9~mJ/m^2$ ($\gamma_s^{\rm d}=30.9,\gamma_s^{\rm p}=12.0$); 20°C | No details available. | ©2009 Diversified Enterprises