Surface Energy Data for PMA: Poly(methyl acrylate), CAS #25087-26-7

Source ^(a)	Mst. Type ^(b)	Data©	Comments ^(d)
Lee, 1967 ⁽¹⁸³⁾	Critical ST	$\gamma_{\rm c}$ = 41 mJ/m²; no temp cited	Test liquids: water, glycerol, formamide, alcohols, and long- chain polyglycols.
Wu, 1971 ^(<u>41</u>)	Critical ST	$\gamma_{c} = 35 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Test liquids not known.
Partington, 1960 ⁽²⁰⁹⁾	From polymer melt	$\gamma_{s} = 41.0 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 40.0, \gamma_{s}^{p} = 1.0); 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20° C. M _w = 25,000.
Wu, 1971 ⁽⁴⁾⁾	From polymer melt	$\gamma_{s}=41.0\ mJ/m^{2}\ (\gamma_{s}{}^{\rm d}=37.8,\ \gamma_{s}{}^{\rm p}=3.2);\ 20^{\rm o}C$	Direct measurement of polymer melt extrapolated to 20° C; polarity calculated from interfacial tension with PE by harmonic mean. M _w = 25,000.
Wu, 1971 ^(<u>41</u>)	From polymer melt	$\gamma_{\rm s} = 40.1 \text{ mJ/m}^2$; 20°C	Direct measurement of polymer melt extrapolated to 20°C.
Wu, 1989 ⁽²⁷³⁾	From polymer melt	$\gamma_{s}^{^{}} = 41.0 \text{ mJ/m}^{2} (\gamma_{s}^{^{}} = 30.8, \gamma_{s}^{^{}} = 10.2); 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20° C. M ₂ = 25,000.
Wu, 1989 ⁽²⁷³⁾	From polymer melt	$\gamma_{s}=42.7~mJ/m^{2}~(\gamma_{s}{}^{\rm d}=33.7,~\gamma_{s}{}^{\rm p}=9.0);~20{}^{\rm o}C$	Direct measurement of polymer melt extrapolated to 20°C. Molecular weight not specified.
Lee, 1968 ⁽¹³¹⁾	Calculated	$\gamma_{c} = 39 \text{ mJ/m}^{2}$; no temp cited	Calculated from glass temperature of 279K.
Wu, 1968 ⁽¹⁸²⁾	Calculated	$\gamma_{\rm s} = 40 \text{ mJ/m}^2$; 20°C	Calculated from molecular constitution.
Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 41.1 \text{ mJ/m}^2$; no temp cited	Calculated from parachor and cohesive energy.
Pritykin, 1986(199)	Calculated	$\gamma_s = 35.1 \text{ mJ/m}^2$; no temp cited	Calculated from cohesion parameters and monomer refractometric characteristics, equation 1.
Pritykin, 1986 ⁽¹⁹⁹⁾	Calculated	$\gamma_s = 38.0 \text{ mJ/m}^2$; no temp cited	Calculated from cohesion parameters and monomer refractometric characteristics, equation 2.

©2009 Diversified Enterprises