Surface Energy Data for PS: Polystyrene, CAS #9003-53-6

Source ^(a)	Mst. Type ^(b)	Data [©]	Comments ^(d)
Ellison, 1954 ⁽⁸⁾	Critical ST	$\gamma_{c} = 33 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Test liquids not known.
Shafrin, 1963 ⁽²⁰¹⁾	Critical ST	$\gamma_c = 43 \text{ mJ/m}^2$; no temp cited	Test liquids not known.
Shafrin, 1963 ⁽²⁰¹⁾	Critical ST	$\gamma_{\rm c} = 35 {\rm mJ/m^2}$; no temp cited	From polar test liquids only.
Jarvis, 1964 ⁽¹⁵⁾	Critical ST	$\gamma_{\rm r} = 33 \text{ mJ/m}^2$; 25°C	Various test liquids.
Lee, 1968 ⁽¹³¹⁾	Critical ST	$\gamma_{\rm c}$ = 36 mJ/m ² ; no temp cited	Test liquids: water, glycerol, formamide, alcohols, and long-
-			chain polyglycols; atactic PS.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{\rm c} = 30.5 \text{ mJ/m}^2; 25^{\circ}\text{C}$	Ethylene glycol/2-ethoxyethanol mixes, based on advancing contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{\rm c}=30.5~mJ/m^2;~25^{\rm o}C$	Ethylene glycol/2-ethoxyethanol mixes, based on retreating contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{1} = 31.5 \text{ mJ/m}^{2}; 25^{\circ}\text{C}$	Polyglycol blends, based on advancing contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{\rm c} = 37 \text{ mJ/m}^2$; 25°C	Polyglycol blends, based on retreating contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{\rm c}^{\rm c} = 30 \ {\rm mJ/m^2}; \ 25^{\circ}{\rm C}$	Formamide/2-ethoxyethanol mixes, based on advancing
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_c = 34 \text{ mJ/m}^2$; 25°C	Formamide/2-ethoxyethanol mixes, based on retreating contact angles.
Dann. 1970 ⁽⁹⁴⁾	Critical ST	$\gamma = 36 \text{ mJ/m}^2$: 25°C	Per ASTM D-2578, using formamide/2-ethoxyethanol mixes.
Markgraf. 2005 ⁽⁶²⁾	Critical ST	$\gamma_{c} = 33 \text{ mJ/m}^{2}$: no temp cited	Test liquids not known: low ionomer PS.
Markgraf. 2005 ⁽⁶²⁾	Critical ST	$\gamma_{\rm c} = 38 {\rm mJ/m^2}$: no temp cited	Test liquids not known: high ionomer PS.
Jarvis, 1964 ⁽¹⁵⁾	Contact angle	$\theta_{\rm L}^{\rm A} = 96^{\circ}: 25^{\circ}{\rm C}. 15-30\% {\rm RH}$	Polymer surface prepared by solvent evaporation
Jarvis, 1964 ⁽¹⁵⁾	Contact angle	$\theta_{W}^{MA} = 93^{\circ}; 25^{\circ}C, 15-30\% RH$	Smooth surface prepared by pressing polymer powder against stainless steel at 25°C
Dann, 1970 ⁽⁹⁴⁾	Contact angle	$\theta_{W}^{A} = 84^{\circ}; 25^{\circ}C$	Sessile drop method; surface cleaned with detergent and rinsed with distilled water.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\theta_{\rm w}{}^{\rm A} = 91^{\circ}; 20^{\circ}{\rm C}$	
Westerdahl, 1974 ⁽⁶³⁾	Contact angle	$\theta_{W}^{WY} = 88^{\circ}$; no temp cited	Dow 475 modified PS film, thickness 10 mils.
Omenyi, 1981 ⁽¹⁷⁸⁾	Contact angle	$\theta_{\rm u}^{\rm v} = 84^{\circ}; 22^{\circ}{\rm C}$	
Wu, 1982 ⁽²⁷⁾	Contact angle	$\theta_{u}^{WA} = 91^{\circ}, \ \theta_{u}^{R} = 84^{\circ}, \ d\theta_{u} = 7^{\circ}; \ 20^{\circ}C$	
Triolo, 1983 ⁽¹⁸⁹⁾	Contact angle	$\theta_{W}^{R} = 86^{\circ}$; no temp cited	Spincast on silanized coverslips. Fully hydrated sample
	U U	vv	immersed in water; interface with advancing, submerged octane bubble $M = 84,600$
Wang, 1983 ⁽²⁴⁹⁾	Contact angle	$\theta_{W}^{A} = 90^{\circ}$; no temp cited	Amorphous, atactic, non-oriented PS, $M_w = 67,000$; surface polished and cleaned.
Wang, 1983 ⁽²⁴⁹⁾	Contact angle	$\theta_{W}^{A} = 90^{\circ}$; no temp cited	Amorphous, atactic PS, $M_w = 67,000$; oriented with 3:1 draw ratio. Contact angle measured perpindicular to orientation;
Wang, 1983 ⁽²⁴⁹⁾	Contact angle	$\theta_{\rm W}^{\rm A} = 82^{\circ}$; no temp cited	Amorphous, atactic PS, $M_w = 67,000$; oriented with 3:1 draw

			ratio. Contact angle measured parallel to orientation; surface polished and cleaned.
Wang, 1983 ⁽²⁴⁹⁾	Contact angle	$\theta_{W}^{A} = 98^{\circ}$; no temp cited	Amorphous, atactic PS, $M_w = 67,000$; oriented with 4.5:1 draw ratio. Contact angle measured perpindicular to orienta- tion: surface polished and cleaned
Wang, 1983 ⁽²⁴⁹⁾	Contact angle	$\theta_{W}^{A} = 75^{\circ}$; no temp cited	Amorphous, atactic PS, $M_w = 67,000$; oriented with 4.5:1 draw ratio. Contact angle measured parallel to orientation; surface polished and cleaned.
Guiseppe, 1986 ⁽⁷⁷⁾	Contact angle	$\theta_{w}^{Y} = 84^{\circ}$; no temp cited	
Cheever, 1986 ⁽⁷¹⁾	Contact angle	$\theta_{W}^{Y} = 85^{\circ}$; no temp cited	Molded PS.
Strobel, 1987 ⁽¹⁹²⁾	Contact angle	$\theta_{W}^{MA} = 88^{\circ}$; no temp cited	Commercial grade biaxially-oriented film, thickness 1.5 mils.
Occhiello, 1990 ⁽²⁰³⁾	Contact angle	$\theta_{W}^{WA} = 90^{\circ}, \ \theta_{W}^{R} = 78^{\circ}, \ d\theta_{W} = 12^{\circ};$ no temp cited	Measured by sessile drop. $M_w = 2700$.
Occhiello, 1990 ⁽²⁰³⁾	Contact angle	$\theta_{W}^{A} = 90^{\circ}, \ \theta_{W}^{R} = 79^{\circ}, \ d\theta_{W} = 11^{\circ};$ no temp cited	Measured by sessile drop. $\rm M_{w}$ = 50,000.
Jonsson, 1992 ⁽¹¹²⁾	Contact angle	$\theta_{W}^{Y} = 81^{\circ}$; no temp cited	Cleaned by sonification in a 70/30 ethanol/water solution and rinsed with distilled water.
Fukuzawa, 1994(113)	Contact angle	$\theta_{W}^{Y} = 91.3^{\circ}$; no temp cited	Contact angle measured after stabilizing for 15 secs.
Baier, 1996 ⁽¹⁴⁸⁾	Contact angle	$\theta_{W}^{Y} = 90^{\circ}$; no temp cited	
Cho, 2005 ⁽²²⁶⁾	Contact angle	$\theta_{W}^{Y} = 73^{\circ}$; no temp cited	Measured by sessile drop method.
Kondyurin, 2006 ⁽²⁷⁷⁾	Contact angle	$\theta_{W}^{Y} = 90^{\circ}$; no temp cited	
Carre, 2007 ⁽⁶¹⁾	Contact angle	$\theta_{W}^{A} = 85.4^{\circ}; 22^{\circ}C$	
Dann, 1970 ⁽⁹⁴⁾	Contact angle	$\gamma_{\rm s}^{\rm d} = 40 \text{ mJ/m}^2$; 25°C	Various test liquids.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_{s}^{'} = 42.0 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 41.2, \gamma_{s}^{p} = 0.8); 20^{\circ}\text{C}$	Test liquids: water and diiodomethane, by geometric mean equation.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_{s} = 42.6 \ mJ/m^{2} \ (\gamma_{s}^{\rm \ d} = 38.3, \ \gamma_{s}^{\rm \ p} = 4.3); \ 20^{\circ}C$	Test liquids: water and diiodomethane, by harmonic mean equation.
Kitazaki, 1972 ⁽¹⁹¹⁾	Contact angle	$\gamma_{s} = 40.6 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 33.8, \gamma_{s}^{p} = 6.8);$ no temp cited	Various test liquids; original results split polar component into hydrogen- and non-hydrogen bonding parameters.
Van Krevelen, 1976 ⁽⁸⁵⁾	Contact angle	$\gamma_{s} = 42.0 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 41.4, \gamma_{s}^{p} = 0.6);$ no temp cited	Test liquids not known.
Wu, 1979 ^{(<u>45)</u>}	Contact angle	$\gamma_{c} = 43.0 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Test liquids not known; calculated by the equation of state method.
Omenyi, 1981 ⁽¹⁷⁸⁾	Contact angle	$\gamma = 32.4 \text{ mJ/m}^2$; 22°C	Test liquids not known.
van Oss, 1986 ⁽²⁵⁾	Contact angle	$\gamma_{\rm c} = 42 \text{ mJ/m}^2 (\gamma_{\rm c}^{\rm LW} = 42, \gamma_{\rm c}^{\rm AB} = 0.0,$	Test liquids: water, alpha-bromonaphthalene, diiodomethane,
	0	$\gamma_{c}^{+} = 0.0, \gamma_{c} = 1.1$; 20°C	formamide, and glycerin; acid-base analysis.
Fukuzawa, 1994 ⁽¹¹³⁾	Contact angle	$\gamma_{\rm c} = 30.6 \text{ mJ/m}^2$ ($\gamma_{\rm c}^{\rm LW} = 33.4, \gamma_{\rm c}^{\rm AB} = -2.8,$	Test liquids: water, formamide, and dijodomethane; acid-base
	0	$\gamma_{s}^{+} = 0.36, \gamma_{s}^{-} = 5.3$; no temp cited	analysis, calculated per Good and Van Oss ⁽⁸⁶⁾ . Contact angles measured after stabilizing for 15 secs.
Fukuzawa, 1994 ⁽¹¹³⁾	Contact angle	γ_{s} = 34.8 mJ/m²; no temp cited	Test liquids: water, formamide, and diiodomethane; acid-base analysis calculated by arithmetic and geometric means.

Morra, 1999 ⁽¹³⁴⁾	Contact angle	$\gamma_{s}=38.2~mJ/m^{2}~(\gamma_{s}^{\rm LW}=38.4,~\gamma_{s}^{\rm AB}=-0.2,$	Test liquids not known; acid-base analysis based on reference
		$\gamma_{s}^{+} = 0.03, \gamma_{s}^{-} = 0.2$); no temp cited	values for water of $\gamma^{_{+}}$ = 48.5 mJ/m ² and γ = 11.2 mJ/m ² .
Kwok, 2000 ⁽¹⁶⁶⁾	Contact angle	$\gamma_{\rm c}$ = 28.9 mJ/m ² ; no temp cited	Re-calculated by equation of state method from data produced by Ellison, 1954 ⁽¹³⁾ .
Kwok, 2000 ⁽¹⁶⁶⁾	Contact angle	$\gamma_{\rm c}$ = 29.7 mJ/m²; no temp cited	Re-calculated by equation of state method from data produced by Kwok, 1998 ⁽¹⁶⁹⁾ .
Kwok, 2000 ⁽¹⁶⁶⁾	Contact angle	$\gamma_{\rm c}$ = 29.5 mJ/m²; no temp cited	Re-calculated by alternate equation of state method from data
Cho, 2005 ⁽²²⁶⁾	Contact angle	$\gamma_s = 44 \text{ mJ/m}^2 (\gamma_s^{d} = 38, \gamma_s^{p} = 6);$	Test liquids: water and formamide.
Marian $1063^{(197)}$	From polymor molt	no temp cited	Direct measurement of polymor molt ovtrapolated to 20°C
Oda 1968(247)	From polymor molt	$\gamma_s = 52.4 \text{ mJ/m}^2, 20 \text{ C}$	Massurement by sessile hubble of polymer melt extrapolated
Oua, 1900	From porymer men	$\gamma_{\rm s} = 40.0 \text{ mJ/m}$, 20 C	to 20° C. M = 44,000.
LeGrand, 1969 ⁽³⁶⁾	From polymer melt	$\gamma_s = 39.4 \text{ mJ/m}^2$; 20°C	Direct measurement of polymer melt extrapolated to 20°C.
			$M_{n} = 9200.$
LeGrand, 1969 ⁽³⁶⁾	From polymer melt	$\gamma_{s} = 39.3 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20° C. M _p = 1680.
Bender, 1970 ⁽²⁴⁸⁾	From polymer melt	$\gamma_{s} = 39.3 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Measurement by sessile bubble of polymer melt extrapolated
		5	to 20°C; anionic polymerized PS, $M_p = 9,290$.
Wu, 1970 ⁽³⁵⁾	From polymer melt	$\gamma_{\rm c} = 40.6 \text{ mJ/m}^2 (\gamma_{\rm c}^{\rm d} = 32.5, \gamma_{\rm c}^{\rm p} = 8.1); 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20°C.
Wu, 1970 ⁽³⁵⁾	From polymer melt	$\gamma_{s} = 40.7 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 33.9, \gamma_{s}^{p} = 6.8); 20^{\circ}\text{C}$	Measurement by pendant drop of polymer melt extrapolated to 20° C. M ₂ = 44,000.
Wu, 1971 ⁽²⁹⁾	From polymer melt	$\gamma_{s} = 40.7 \ mJ/m^{2} \ (\gamma_{s}^{\rm ~d} = 34.3, \ \gamma_{s}^{\rm ~p} = 6.4); \ 20^{\circ}C$	Measurement by pendant drop of polymer melt extrapolated to 20°C; polarity calculated from interfacial tension with PE by geometric mean equation
Lee 1968 ⁽¹³¹⁾	Calculated	$\gamma = 29 \mathrm{mI/m^2}$. no temp cited	Calculated from glass temperature of 373K atactic PS
W11 1968 (182)	Calculated	$v_{s} = 36 \text{ mJ/m}^{2} \cdot 20^{\circ} \text{C}$	Calculated from molecular constitution
Wu 1970 ⁽³⁵⁾	Calculated	$\gamma_{s} = 37.5 \text{ mJ/m}^{2} \cdot 20^{\circ} \text{C}$	Calculated from parachor and molecular weight
Sewell 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 31.3 \text{ mJ/m}^2$: no temp cited	Calculated from parachor and cohesive energy
Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma = 29.4 \text{ mJ/m}^2$: no temp cited	Calculated by least squares from cohesive energy and molar
5011011, 1011	culculated	Is zori in , no componed	volume.
Wu, 1974 ⁽⁴⁷⁾	Calculated	$\gamma = 29.5 \text{ mJ/m}^2$; 20°C	Calculated from free volume theory and molecular weight.
Wu, 1974 ⁽⁴⁷⁾	Calculated	$\gamma' = 30.0 \text{ mJ/m}^2$; 20°C	Calculated from free volume theory and molecular weight.
Van Krevelen, 1976 ⁽⁸⁵⁾	Calculated	$\gamma = 43 \text{ mJ/m}^2$; no temp cited	Calculated from parachor parameter.
Wu, 1982 ⁽¹⁸⁾	Calculated	$\gamma_{s}^{s} = 38.7 \text{ mJ/m}^{2}; 20^{\circ}\text{C}^{2}$	Calculated from cohesive energy density and solubility
D to 1 to 0 0 (100)			parameters.
Pritykin, 1986 ⁽¹⁹⁹⁾	Calculated	$\gamma_s = 48.7 \text{ mJ/m}^2$; no temp cited	Calculated from cohesion parameters and monomer
Pritykin 1986(199)	Calculated	$\gamma = 40.4 \text{ mJ/m}^2$: no temp cited	Calculated from cohesion parameters and monomer
1 mynm, 1000-	Jaiculaicu	$I_s = 10.1 \text{ m}/\text{m}$, no temp eneu	refractometric characteristics equation ?
Van Ness, 1992(186)	Calculated	$\gamma_s = 39.6 \text{ mJ/m}^2$; 20°C	Calculated molten surface tension value, extrapolated to 20°C.

Mangipudi, 1996 ⁽²⁶⁹⁾	Other	$\gamma_s = 44 \text{ mJ/m}^2$; no temp cited	Measured by contact deformation per Johnson-Kendall-Roberts
			method.
Yagnyatinskaya, 1970 ⁽²⁰⁰⁾	Unknown	γ_s = 45.2 mJ/m²; no temp cited	No details available.

©2009 Diversified Enterprises