Surface Energy Data for PVA: Poly(vinyl acetate), CAS #9003-20-7

Source ^(a)	Mst. Type ^(b)	Data [©]	Comments ^(d)
Wu, 1968 ⁽¹⁸²⁾	Critical ST	$\gamma = 36 \text{ mJ/m}^2$; no temp cited	Test liquids not known.
Crocker, 1969(111)	Critical ST	$\gamma_{c} = 37 \text{ mJ/m}^{2}$; no temp cited	Test liquids not known.
Wu, 1971 ^(<u>41</u>)	Critical ST	$\gamma_{c} = 33 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Test liquids not known.
McCafferty, 2000(217)	Contact angle	$\theta_{W}^{Y} = 60.6^{\circ}$; no temp cited	Surface cleaned with light methanol wipe.
Roe, 1978 ⁽²²³⁾	Contact angle	$\gamma_{s}^{r} = 42.9 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 27.4, \gamma_{s}^{p} = 15.4);$ no temp cited	Test liquids not known.
McCafferty, 2000(217)	Contact angle	$\gamma_{\rm s} = 44.5 \text{ mJ/m}^2$ ($\gamma_{\rm s}^{\rm LW} = 42.6, \gamma_{\rm s}^{\rm AB} = 1.9,$	Test liquids: water, diiodomethane, formamide, ethylene
	_	$\gamma_{s}^{+} = 0.04, \gamma_{s}^{-} = 22.3$); no temp cited	glycol, and glycerin; acid-base analysis. Cleaned with methanol wipe.
Wu, 1969 ⁽²⁸⁾	From polymer melt	$\gamma_{s} = 36.5 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 24.5, \gamma_{s}^{p} = 12.0); 20^{\circ}\text{C}$	Measurement by pendant drop of polymer melt extrapolated to 20°C; polarity calculated from interfacial tension with PE by harmonic mean. $M_w = 11,000$.
Wu, 1970 ⁽³⁵⁾	From polymer melt	$\gamma_{s} = 36.3 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 23.2, \gamma_{s}^{p} = 13.1); 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20°C.
Wu, 1971 ⁽²⁹⁾	From polymer melt	$\gamma_{s} = 36.5 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 23.6, \gamma_{s}^{p} = 12.9); 20^{\circ}\text{C}$	Measurement by pendant drop of polymer melt extrapolated to 20°C; polarity calculated from interfacial tension with PE by geometric mean equation.
Lee, 1968 ⁽¹³¹⁾	Calculated	$\gamma_s = 40 \text{ mJ/m}^2$; no temp cited	Calculated from glass temperature of 301K.
Wu, 1968 ⁽¹⁸²⁾	Calculated	$\gamma_{s} = 36 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Calculated from molecular constitution.
Wu, 1970 ^{(<u>35)</u>}	Calculated	$\gamma_{s} = 38.8 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Calculated from parachor and molecular weight.
Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 41.1 \text{ mJ/m}^2$; no temp cited	Calculated from parachor and cohesive energy.
Wu, 1982 ⁽¹⁸⁾	Calculated	$\gamma_{\rm s} = 39.1 \text{ mJ/m}^2$; 20°C	Calculated from cohesive energy density and solubility parameters.
Van Ness, 1992 ⁽¹⁸⁶⁾	Calculated	$\gamma_{\rm s} = 37.0 \text{ mJ/m}^2$; 20°C	Calculated molten surface tension value, extrapolated to 20°C.
Pritykin, 1986 ⁽¹⁹⁹⁾	Calculated	$\gamma_s = 35.7 \text{ mJ/m}^2$; no temp cited	Calculated from cohesion parameters and monomer refractometric characteristics, equation 1.
Pritykin, 1986(199)	Calculated	γ_{s} = 38.0 mJ/m²; no temp cited	Calculated from cohesion parameters and monomer refractometric characteristics, equation 2.
Surface-tension.de, 2007(110)	Unknown	$\gamma_s = 36.5 \text{ mJ/m}^2 (\gamma_s^{\rm d} = 25.1, \gamma_s^{\rm p} = 11.4); 20^{\circ}C$	No details available.

©2009 Diversified Enterprises