Surface Energy Data for PVC: Poly(vinyl chloride), CAS # 9002-86-2

Source ^(a)	Mst. Type ^(b)	Data ^(c)	Comments ^(d)
Ellison, 1954 ⁽⁸⁾	Critical ST	$\gamma_{c} = 39 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Various test liquids; unplasticized PVC.
Lee, 1968 ⁽¹³¹⁾	Critical ST	$\gamma_c = 39 \text{ mJ/m}^2$; no temp cited	Test liquids: water, glycerol, formamide, alcohols, and long- chain polyglycols.
Crocker, 1969(111)	Critical ST	$\gamma_{c} = 30 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Test liquids not known.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{c} = 30.5 \text{ mJ/m}^{2}; 25^{\circ}\text{C}$	Ethylene glycol/2-ethoxyethanol mixes, based on advancing contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_c = 49 \text{ mJ/m}^2$; 25°C	Ethylene glycol/2-ethoxyethanol mixes, based on retreating contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{c} = 31.5 \text{ mJ/m}^{2}; 25^{\circ}\text{C}$	Polyglycol blends, based on advancing contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{c}^{c} = 49 \text{ mJ/m}^{2}; 25^{\circ}\text{C}$	Polyglycol blends, based on retreating contact angles.
Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{c}^{c} = 31 \text{ mJ/m}^{2}; 25 \text{ °C}$	Formamide/2-ethoxyethanol mixes, based on advancing contact angles.
^(d) Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_c = >56 \text{ mJ/m}^2$; 25°C	Formamide/2-ethoxyethanol mixes, based on retreating contact angles.
^(d) Dann, 1970 ⁽⁹⁴⁾	Critical ST	$\gamma_{c} = >56 \text{ mJ/m}^{2}; 25^{\circ}\text{C}$	Per ASTM D-2578, using formamide/2-ethoxyethanol mixes.
Markgraf, 2005 ⁽⁶²⁾	Critical ST	$\gamma_c^{c} = 39 \text{ mJ/m}^2$; no temp cited	Test liquids not known; unplasticized PVC.
Markgraf, 2005 ⁽⁶²⁾	Critical ST	$\gamma_c = 33-38 \text{ mJ/m}^2$; no temp cited	Test liquids not known; plasticized PVC.
Dann, 1970 ⁽⁹⁴⁾	Contact angle	$\theta_{W}^{A} = 83^{\circ}; 25^{\circ}C$	Sessile drop method; surface cleaned with detergent and rinsed with distilled water.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\theta_{W}^{Y} = 87^{\circ}; 20^{\circ}C$	Unplasticized PVC.
Moshonov, 1980 ⁽¹¹⁸⁾	Contact angle	$\theta_{W}^{WY} = 85^{\circ}$; no temp cited	Measured 60 secs. after application of water droplet; surface cleaned with petroleum ether and rinsed with methanol. PVC contained 20% dioctyl phthalate.
Triolo, 1983 ⁽¹⁸⁹⁾	Contact angle	$\theta_{W}^{R} = 75.3^{\circ}$; no temp cited	Spin cast on silanized coverslips. Fully hydrated sample immersed in water; interface with advancing, submerged octane bubble.
Jonsson, 1992 ⁽¹¹²⁾	Contact angle	$\theta_{W}^{Y} = 60^{\circ}$; no temp cited	PVC with <0.5% plasticizer or stabilizer. Cleaned by sonifi- cation in a 70/30 ethanol/water solution and rinsed with distilled water.
Fukuzawa, 1994 ⁽¹¹³⁾	Contact angle	$\theta_{W}^{Y} = 82.5^{\circ}$; no temp cited	Contact angle measured after stabilizing for 15 secs.
Cho, 2000 ⁽⁹⁹⁾	Contact angle	$\theta_{W}^{WY} = 80^{\circ}$; no temp cited	Measured by sessile drop method.
Etzler, 2000 ^(<u>171</u>)	Contact angle	$\theta_{W}^{^{W}A} = 94.7^{\circ}; 20^{\circ}C$	Measured by Wilhelmy plate method.
McCafferty, 2000(217)	Contact angle	$\theta_{W}^{WY} = 87.8^{\circ}$; no temp cited	Surface cleaned with light methanol wipe.
BPetermann, 2003 ⁽¹³⁹⁾	Contact angle	$\theta_{W}^{WY} = 89^{\circ}; 20^{\circ}C$	Measured by sessile drop method. Roll-coated polymer topcoat applied to carbon steel; surface degreased with ethanol, cleaned with detergent, and rinsed in distilled water. PVC contained

linear alkyl groups as plasticizer.

BPetermann, 2003 ⁽¹⁰⁶⁾	Contact angle	$\theta_{W}^{Y} = 94^{\circ}; 20^{\circ}C$	Measured by sessile drop method. Roll-coated polymer topcoat applied to carbon steel; surface degreased with ethanol, cleaned with detergent, and rinsed in distilled water. PVC contained phthalates as plasticizer.
Balasz, 2005 ⁽²⁵⁴⁾	Contact angle	$\theta_{W}^{A} = 98^{\circ}$; no temp cited	I I
Shafrin, 1963 ⁽²⁰¹⁾	Contact angle	$\gamma_{s}^{w} = 41.5 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 40.0, \gamma_{s}^{p} = 1.5);$ no temp cited	Test liquids not known.
Dann, 1970 ⁽⁹⁴⁾	Contact angle	$\gamma_{c}^{d} = 39 \text{ mJ/m}^{2}; 25^{\circ}\text{C}$	Various test liquids.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_{s}^{p} = 41.5 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 39.8; \gamma_{s}^{p} = 1.7); 20^{\circ}\text{C}$	Test liquids: water and diiodomethane, by geometric mean equation; unplasticized polymer.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_{s}=41.9\ mJ/m^{2}\ (\gamma_{s}^{\rm ~d}=35.6;\ \gamma_{s}^{\rm ~p}=6.3);\ 20^{o}C$	Test liquids: water and dijodomethane, by harmonic mean equation; unplasticized polymer.
Kitazaki, 1972 ⁽¹⁹¹⁾	Contact angle	$\gamma_{s} = 44.0 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 43.7, \gamma_{s}^{p} = 0.3);$ no temp cited	Various test liquids; original results split polar component into hydrogen- and non-hydrogen bonding parameters.
Wu, 1979 ⁽⁴⁵⁾	Contact angle	$\gamma_c = 43.8 \text{ mJ/m}^2$; 20°C	Test liquids not known; calculated by the equation of state method.
van Oss, 1989 ⁽²²⁾	Contact angle	$\begin{array}{l} \gamma_{s}=43.8 \ mJ/m^{2} \ (\gamma_{s}^{ LW}=43.0, \ \gamma_{s}^{ AB}=0.8, \\ \gamma_{s}^{ +}=0.04, \ \gamma_{s}^{ -}=3.5); \ 20^{\circ}C \end{array}$	Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis.
Fukuzawa, 1994 ⁽¹¹³⁾	Contact angle	$\gamma_{s}^{s} = 35.8 \text{ mJ/m}^{2} (\gamma_{s}^{LW} = 34.7, \gamma_{s}^{AB} = 1.1, \gamma_{s}^{+} = 0.05, \gamma_{s}^{-} = 6.2); \text{ no temp cited}$	Test liquids: water, formamide, and diiodomethane; acid-base analysis, calculated per Good and Van Oss ⁽⁸⁶⁾ . Contact angles measured after stabilizing for 15 secs.
Fukuzawa, 1994 ⁽¹¹³⁾	Contact angle	γ_s = 38.3 mJ/m ² ; no temp cited	Test liquids: water, formamide, and diiodomethane; acid-base analysis calculated by arithmetic and geometric means.
Lloyd, 1995 ⁽²¹⁸⁾	Contact angle	$\gamma_{\rm s}^+ = 0.2$, $\gamma_{\rm s}^- = 3.1$; no temp cited	Test liquids not known; acid-base analysis.
Lee, 1999 ⁽¹¹⁶⁾	Contact angle	$\begin{split} \gamma_{s} &= 44 \text{ mJ/m}^{2} \ (\gamma_{s}^{LW} = 43, \gamma_{s}^{AB} = 1.0, \\ \gamma_{s}^{+} &= 0.1, \ \gamma_{s}^{-} = 2.4); \ 20^{\circ}C \end{split}$	Test liquids: water, alpha-bromonaphthalene, diiodomethane, formamide, and glycerin; acid-base analysis, based on reference values for water of $\gamma^* = 34.2 \text{ mJ/m}^2$ and $\gamma = 19 \text{ mJ/m}^2$.
Morra, 1999 ⁽¹³⁴⁾	Contact angle	$\gamma_s = 39.5 \text{ mJ/m}^2 (\gamma_s^{LW} = 39.1, \gamma_s^{AB} = 0.4, \gamma_s^+ = 0.06, \gamma_s^- = 0.9); \text{ no temp cited}$	Test liquids not known; acid-base analysis based on reference values for water of $\gamma^* = 48.5 \text{ mJ/m}^2$ and $\gamma = 11.2 \text{ mJ/m}^2$.
Etzler, 2000 ⁽¹⁷¹⁾	Contact angle	$\gamma_{s}^{*} = 32.5 \text{ mJ/m}^{2} (\gamma_{s}^{LW} = 32.5, \gamma_{s}^{AB} = 0.0, \gamma_{s}^{*} = 0.0, \gamma_{s}^{*} = 0.4); 20^{\circ}C$	Various test liquids; acid-base analysis, by Good-van Oss method. Commercial sample, unknown plasticizer content.
McCafferty, 2000 ⁽²¹⁷⁾	Contact angle	$\gamma_{s}^{*} = 43.0 \text{ mJ/m}^{2} (\gamma_{s}^{LW} = 40.2, \gamma_{s}^{AB} = 2.8, \gamma_{s}^{*} = 0.4, \gamma_{s}^{*} = 5.1); \text{ no temp cited}$	Test liquids: water, diiodomethane, formamide, glycerin, and ethylene glycol; acid-base analysis. Cleaned with methanol wipe.
Berta, 2003 ⁽²⁶²⁾	Contact angle	$\gamma_{s} = 38 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 31.6; \gamma_{s}^{p} = 6.4);$ no temp cited	Test liquids not known.
BPetermann, 2003 ⁽¹³⁹⁾	Contact angle	$\gamma_{s} = 35.2 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 33.6; \gamma_{s}^{p} = 1.6);$ 20°C	Test liquids: water, diiodomethane, and formamide, measured by sessile drop method. Roll-coated polymer topcoat applied to carbon steel; surface degreased with ethanol, cleaned with

to carbon steel; surface degreased with ethanol, cleaned with detergent, and rinsed in distilled water. PVC contained linear alkyl groups as plasticizer.

BPetermann, 2003 ⁽¹³⁹⁾	Contact angle	$\begin{split} \gamma_{s} &= 33.1 \ mJ/m^{2} \ (\gamma_{s}{}^{d} = 32.3; \gamma_{s}{}^{p} = 0.8) ; \\ 20^{o}C \end{split}$	Test liquids: water, diiodomethane, and formamide, measured by sessile drop method. Roll-coated polymer topcoat applied to carbon steel; surface degreased with ethanol, cleaned with detergent, and rinsed in distilled water. PVC contained phthalates as plasticizer.
Wu, 1971 ⁽²⁹⁾	From polymer melt	$\gamma_{s}=43.8\ mJ/m^{2}\ (\gamma_{s}{}^{\rm d}=39.0;\gamma_{s}{}^{\rm p}=4.8);20{}^{\rm o}C$	Direct measurement of polymer melt extrapolated to 20°C; polarity calculated from interfacial tension with PE by harmonic mean.
Wu, 1982 ⁽¹⁸⁾	From polymer melt	$\gamma_s = 42.9 \text{ mJ/m}^2$; 20°C	Direct measurement of polymer melt extrapolated to 20°C. Unplasticized PVC.
Lee, 1968 ⁽¹³¹⁾	Calculated	$\gamma_s = 36 \text{ mJ/m}^2$; no temp cited	Calculated from glass temperature of 354K.
Wu, 1968 ⁽¹⁸²⁾	Calculated	$\gamma_{\rm s} = 43 \text{ mJ/m}^2$; 20°C	Calculated from molecular constitution.
Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 42.9 \text{ mJ/m}^2$; no temp cited	Calculated from parachor and cohesive energy.
Van Krevelen, 1976 ⁽⁸⁵⁾	Calculated	$\gamma_s = 42 \text{ mJ/m}^2$; no temp cited	Calculated from parachor parameter.
Wu, 1982 ⁽¹⁸⁾	Calculated	$\gamma_{s} = 38.0 \text{ mJ/m}^{2}; 20^{\circ}\text{C}^{-1}$	Calculated from cohesive energy density and solubility parameters.
Surface-tension.de, 2007(110)	Unknown	$\gamma_{s}=41.5~mJ/m^{2}~(\gamma_{s}^{\rm ~d}=39.5,~\gamma_{s}^{\rm ~p}=2);~20^{o}C$	No details available.

©2009 Diversified Enterprises