Surface Energy Data for PVF: Poly(vinyl fluoride), CAS # 24981-14-4

Source	Mst. Type ^(b)	Data ^(c)	Comments ^(d)
Ellison, 1954 ⁽⁸⁾ Wu, 1971 ⁽²⁹⁾	Critical ST Contact angle	$\gamma_{c} = 28 \text{ mJ/m}^{2}, 20^{\circ}\text{C}$ $\theta_{w}^{Y} = 80^{\circ}, 20^{\circ}\text{C}$	Various test liquids.
Moshonov, 1980 ⁽¹¹⁸⁾	Contact angle	$\theta_{W}^{WY} = 85^{\circ}$; no temp cited	Measured 60 secs. after application of water droplet; surface cleaned with isopropanol at 60°C and rinsed with methanol.
Vargha-Butler, 1985(180)	Contact angle	$\theta_{W}^{A} = 88.6^{\circ}; 20^{\circ}C$	
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_s = 36.7 \text{ mJ/m}^2 (\gamma_s^{d} = 32.0, \gamma_s^{p} = 4.7); 20^{\circ}\text{C}$	Test liquids: water and diiodomethane, by geometric mean equation.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_{s}=38.4~mJ/m^{2}~(\gamma_{s}^{\rm ~d}=27.3,~\gamma_{s}^{\rm ~p}=11.1);~20^{\rm o}C$	Test liquids: water and diiodomethane, by harmonic mean equation.
Kitazaki, 1972 ⁽¹⁹¹⁾	Contact angle	$\gamma_{s} = 43.5 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 42.3, \gamma_{s}^{p} = 1.2);$ no temp cited	Various test liquids; original results split polar component into hydrogen- and non-hydrogen bonding parameters.
Wu, 1979 ⁽⁴⁵⁾	Contact angle	$\gamma_{c} = 37.5 \text{ mJ/m}^{2}, 20^{\circ}\text{C}$	Test liquids not known; calculated by the equation of state method.
Brewis, 1981 ⁽²⁶¹⁾	Contact angle	$\gamma_{s} = 36.7 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 36.7, \gamma_{s}^{p} = 0.0);$ no temp cited	Test liquids not known.
Vargha-Butler, 1985 ⁽¹⁸⁰⁾	Contact angle	$\gamma_{c} = 29.4 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Test liquids not known; calculated by the equation of state method.
Lloyd, 1995 ⁽²¹⁸⁾	Contact angle	$\gamma_s = 36.7 \text{ mJ/m}^2 (\gamma_s^{LW} = 34.8, \gamma_s^{AB} = 1.9, \gamma_s^+ = 0.2, \gamma_s^- = 4.5); \text{ no temp cited}$	Test liquids not known; acid-base analysis. Tedlar.
Lloyd, 1995 ⁽²¹⁸⁾	Contact angle	$\gamma_s = 39.0 \text{ mJ/m}^2 (\gamma_s^{LW} = 38.0, \gamma_s^{AB} = 1.0, \gamma_s^* = 0.02, \gamma_s = 13.2); \text{ no temp cited}$	Test liquids not known; acid-base analysis.
Morra, 1999 ⁽¹³⁴⁾	Contact angle	$\gamma_{s} = 36.8 \text{ mJ/m}^{2} (\gamma_{s}^{LW} = 34.1, \gamma_{s}^{AB} = 2.7, \gamma_{s}^{+} = 8.3, \gamma_{s}^{-} = 0.2); \text{ no temp cited}$	Test liquids not known; acid-base analysis based on reference values for water of $\gamma^{+} = 48.5 \text{ mJ/m}^2$ and $\gamma = 11.2 \text{ mJ/m}^2$.
Uschold, 1999 ⁽²¹¹⁾	Contact angle	$\gamma_s = 38 \text{ mJ/m}^2$; no temp cited	
Chang, 2000 ⁽¹⁶²⁾	Contact angle	$\gamma_{\rm s} = 35.2 {\rm mJ/m^2}$; no temp cited	
Kwok, 2000 ⁽¹⁶⁶⁾	Contact angle	$\gamma_c = 35.7 \text{ mJ/m}^2$; no temp cited	Re-calculated by equation of state method from data produced by Ellison, 1954 [®] .
Wu, 1971 ⁽²⁹⁾	From polymer melt	$\gamma_s = 37.5 \text{ mJ/m}^2 (\gamma_s^{\text{d}} = 31.6, \gamma_s^{\text{p}} = 5.9); 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20°C.
Lee, 1968 ⁽¹³¹⁾	Calculated	$\gamma_s = 41 \text{ mJ/m}^2$; no temp cited	Calculated from glass temperature of 323K.
Wu, 1968 ⁽¹⁸²⁾	Calculated	$\gamma_{\rm s} = 29 \text{ mJ/m}^2$; 20°C	Calculated from molecular constitution.
Van Krevelen, 1976 ⁽⁸⁵⁾	Calculated	$\gamma_{s} = 32.5 \text{ mJ/m}^{2}$; no temp cited	Calculated from parachor parameter.
Vargha-Butler, 1985 ⁽¹⁸⁰⁾	Calculated	$\gamma_s = 28.8 \text{ mJ/m}^2$; no temp cited	Calculated from sedimentation volume.