Surface Energy Data for PVDC: Poly(vinylidene chloride) (Saran), CAS # 9002-85-1

Source ^(a)	Mst. Type ^(b)	Data [©]	Comments ^(d)
Ellison, 1954 ⁽⁸⁾ Lee, 1968 ⁽¹³¹⁾	Critical ST Critical ST	$\gamma_c = 40 \text{ mJ/m}^2$; 20°C $\gamma_c = 40 \text{ mJ/m}^2$; no temp cited	Various test liquids. Test liquids: water, glycerol, formamide, alcohols, and long-
Lee, 1300—	Citicarsi	γ _c = 40 ms/m , no temp cited	chain polyglycols.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\theta_{\rm W}^{\ \ Y} = 80^{\rm o}; 20^{\rm o}{\rm C}$	
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_s = 45.0 \text{ mJ/m}^2 (\gamma_s^d = 41.9, \gamma_s^p = 3.1); 20^{\circ}\text{C}$	Test liquids: water and diiodomethane, by geometric mean equation.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_s = 45.4 \text{ mJ/m}^2 (\gamma_s^d = 36.3, \gamma_s^p = 9.1); 20^{\circ}\text{C}$	Test liquids: water and diiodomethane, by harmonic mean equation.
Kitazaki, 1972 ⁽¹⁹¹⁾	Contact angle	$\gamma_s=45.8~mJ/m^2~(\gamma_s^{~d}=43.0,~\gamma_s^{~p}=2.8);$ no temp cited	Various test liquids; original results split polar component into hydrogen- and non-hydrogen bonding parameters.
Wu, 1979 ⁽⁴⁵⁾	Contact angle	$\gamma_c = 45.2 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Test liquids not known; calculated by the equation of state method.
Morra, 1999 ⁽¹³⁴⁾	Contact angle	$\gamma_s = 40.3 \text{ mJ/m}^2 \ (\gamma_s^{LW} = 40.4, \ \gamma_s^{AB} = -0.1, \ \gamma_s^{+} = 0.002, \ \gamma_s^{-} = 2.6); \text{ no temp cited}$	Test liquids not known; acid-base analysis based on reference values for water of γ^+ = 48.5 mJ/m² and γ = 11.2 mJ/m².
Kwok, 2000 ⁽¹⁶⁶⁾	Contact angle	$\gamma_c = 35.7 \text{ mJ/m}^2$; no temp cited	Re-calculated by equation of state method from data produced by Ellison, 1954 ⁽⁸⁾ .
Wu, 1971 ⁽²⁹⁾	From polymer melt	$\gamma_s = 45.2 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20°C.
Wu, 1968 ⁽¹⁸²⁾	Calculated	$\gamma_{\rm s} = 40 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Calculated from molecular constitution.
Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 39.6 \text{ mJ/m}^2$; no temp cited	Calculated from parachor and cohesive energy.
Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 46.6 \text{ mJ/m}^2$; no temp cited	Calculated by least squares from cohesive energy and molar volume.
Surface-tension.de, 2007(110)	Unknown	$\gamma_s = 45.0~mJ/m^2$ ($\gamma_s^{\rm ~d} = 40.5,~\gamma_s^{\rm ~p} = 4.5$); 20°C	No details available.

©2009 Diversified Enterprises