Surface Energy Data for PVDF: Poly(vinylidene fluoride), CAS #24937-79-9

Source ^(a)	Mst. Type ^(b)	Data [©]	Comments ^(d)
Ellison, 1954 ⁽⁸⁾	Critical ST	$\gamma_c = 25 \text{ mJ/m}^2$; 20°C	Various test liquids.
Dalal, 1987 ⁽²¹²⁾	Critical ST	$\gamma_c = 36.5 \text{ mJ/m}^2$; no temp cited	Various test liquids.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\theta_{\rm W}^{\rm Y} = 82^{\circ}; 20^{\circ}{\rm C}$	
Vargha-Butler, 1985 ⁽¹⁸⁰⁾	Contact angle	$\theta_{W}^{A} = 94.8^{\circ}; 20^{\circ}C$	
Jonsson, 1992 ⁽¹¹²⁾	Contact angle	$\theta_{W}^{Y} = 90^{\circ}$; no temp cited	Cleaned by sonification in a 70/30 ethanol/water solution and rinsed with distilled water.
BPetermann, 2003 ⁽¹³⁹⁾	Contact angle	$\theta_{W}^{Y} = 86^{\circ}; 20^{\circ}C$	Measured by sessile drop method. Roll-coated polymer topcoat applied to carbon steel; surface degreased with ethanol, cleaned with detergent, and rinsed in distilled water.
Pescu, 2005 ⁽²⁵²⁾	Contact angle	$\theta_{W}^{A} = 92^{\circ}, \ \theta_{W}^{R} = 91^{\circ}, \ d\theta_{W} = 1^{\circ}; \ 20^{\circ}C$	Measured by sessile drop method. Nonpiezoelectric 0.25mm thick PVDF film.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_{s}=30.3~mJ/m^{2}~(\gamma_{s}^{\rm ~d}=23.3,~\gamma_{s}^{\rm ~p}=7.0);20^{o}C$	Test liquids: water and diiodomethane, by geometric mean equation.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_s = 33.2 \text{ mJ/m}^2 (\gamma_s^{d} = 20.6, \gamma_s^{p} = 12.6); 20^{\circ}\text{C}$	Test liquids: water and diiodomethane, by harmonic mean equation.
Kitazaki, 1972 ⁽¹⁹¹⁾	Contact angle	$\gamma_{s} = 40.2 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 27.6, \gamma_{s}^{p} = 12.6);$ no temp cited	Various test liquids; original results split polar component into hydrogen- and non-hydrogen bonding parameters.
Wu, 1979 ⁽⁴⁵⁾	Contact angle	$\gamma_{\rm c} = 36.5 \text{ mJ/m}^2$; 20°C	Test liquids not known; calculated by the equation of state method.
Dalal, 1987 ⁽²¹²⁾	Contact angle	$\gamma = 36.2 \text{ mJ/m}^2$; no temp cited	Various test liquids, by geometric mean equation.
Dalal, 1987 ⁽²¹²⁾	Contact angle	$\gamma_{c} = 37.4 \text{ mJ/m}^{2}$; no temp cited	Various test liquids, by harmonic mean equation.
Vargha-Butler, 1985 ⁽¹⁸⁰⁾	Contact angle	$\gamma_{\rm c} = 25.5 \text{ mJ/m}^2$; 20°C	Test liquids not known; calculated by the equation of state method.
Morra, 1999 ⁽¹³⁴⁾	Contact angle	$\gamma_{c} = 30.5 \text{ mJ/m}^{2} (\gamma_{c}^{LW} = 28.6, \gamma_{c}^{AB} = 1.9,$	Test liquids not known; acid-base analysis based on reference
	0	$\gamma_{c}^{+} = 10.5, \gamma_{c}^{-} = 0.08$; no temp cited	values for water of γ^{+} = 48.5 mJ/m ² and γ = 11.2 mJ/m ² .
Chang, 2000(162)	Contact angle	$\gamma_s = 31.0 \text{ mJ/m}^2$; no temp cited	
Kwok, 2000 ⁽¹⁶⁶⁾	Contact angle	$\gamma_{\rm c}$ = 34.3 mJ/m ² ; no temp cited	Re-calculated by equation of state method from data produced by Ellison, 1952 ⁽⁸⁾ .
BPetermann, 2003 ⁽¹³⁹⁾	Contact angle	$\gamma_{s} = 33.8 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 31.1; \gamma_{s}^{p} = 2.7); 20^{\circ}\text{C}$	Test liquids: water, diiodomethane, and formamide, measured by sessile drop method. Roll-coated polymer topcoat applied to carbon steel; surface degreased with ethanol, cleaned with detergent, and rinsed in distilled water.
Wu, 1971 ⁽²⁹⁾	From polymer melt	$\gamma_{\rm s} = 36.5 \text{ mJ/m}^2$; 20°C	Direct measurement of polymer melt extrapolated to 20°C.
Lee, 1968 ⁽¹³¹⁾	Calculated	$\gamma_s = 23 \text{ mJ/m}^2$; no temp cited	Calculated from glass temperature of 228K.
Wu, 1968 ⁽¹⁸²⁾	Calculated	$\gamma_s = 26 \text{ mJ/m}^2$; 20°C	Calculated from molecular constitution.
Sewell, 1971 ⁽¹⁹³⁾	Calculated	$\gamma_s = 24.5 \text{ mJ/m}^2$; no temp cited	Calculated from parachor and cohesive energy.
Vargha-Butler, 1985(180)	Calculated	$\gamma_s = 27.5 \text{ mJ/m}^2$; no temp cited	Calculated from sedimentation volume.